How Linear Actuators Work & What They Are
3 min
The linear actuator is a device that can convert rotary motion into precise linear motion. Through its own characteristics, it can carry equipment or itself to perform translation, up and down motion to achieve certain operational requirements. With the gradual development of modern automation and today's demand for mechanical operations, linear actuators are playing a key role.
What is a Linear Actuator?
Linear actuators, also known as “linear motors” or “electric cylinders”, are used as power drive devices that can convert the rotational energy generated by the motor into linear motion, just like a motor that pushes or pulls something in a straight line instead of rotating it. This conversion process usually involves the use of a lead screw or similar mechanism, in which the motor rotates the threaded screw, thereby moving the nut attached to the actuator arm in a linear direction.
Fig. 1 Linear Actuators Series
Linear actuators can be used as:
- Carry or support the translation, vertical or multi-directional movement of an object.
- Achieve precise positioning, linear motion and control operations in mechanical or automated systems.
The main features and advantages of linear actuators include:
- Repeatable high-precision operation during movement
- Allow customization,
- Durable and long service life
- High energy efficiency
- Types of Linear Actuators
The types of linear actuators can be roughly divided into three categories, and there are more if they are further divided. This article will only discuss the following three types:
Electric linear actuators: These actuators are driven by electric motors and use gears, screws, or belts to convert rotational energy into linear motion. They are known for their high precision, controllability, and low maintenance requirements.
Hydraulic linear actuators: These actuators use pressurized hydraulic oil, provide high-force output, and are generally used in heavy-duty applications. They require a hydraulic power unit and a reservoir, making them more complex but powerful.
Pneumatic linear actuators: Similar to hydraulic actuators, but using compressed air instead of hydraulic oil, pneumatic actuators are lightweight, cost-effective, and ideal for applications that require cleanliness.
How Does a Linear Actuator Work?
Linear actuators use the rotational energy of an electric motor and convert it into linear motion via gears, screws, or belts. A common example is an electric linear actuator, powered by a DC/AC motor (e.g. 12V-48V DC). The rotation of the motor is usually transmitted through a screw and converted into linear motion by a nut/bracket along the screw axis. This provides precise, controlled motion with adjustable speed and direction. With no fluids or complex hydraulic systems, maintenance costs are low, making it a reliable and cost-effective product for automation and machinery.
Fig. 2 JLCMC Linear Actuator Compatible Motor List
Conclusion
As a high-precision, low-cost and versatile mechanical automation component, linear actuators can adapt to the precise linear motion needs in different scenarios. From electric linear actuators to hydraulic and pneumatic models, understanding what linear actuators are and what they are used for is essential to fully use and maximize their capabilities.
If you are also interested in linear actuators, you can become our JLCMC member and receive our messages at any time. Currently, new users can enjoy up to $9 in no-threshold coupons when they register. Come and buy now!
Keep Learning
What Is a Linear Guide: Principles and Types of Linear Rails Explained
Introduction In modern machinery and automation, linear guides are essential components for achieving precise, smooth, and repeatable motion along a single axis. Whether in CNC machines, 3D printers, robotics, or industrial automation, they ensure that components move accurately and efficiently under varying loads. The core question engineers and designers often ask is: What is a linear guide, and how do different types of linear rails affect performance, load capacity, and precision? This article exp......
Types of Linear Actuators & Their Uses
Linear actuators have gradually become an indispensable part of modern automation and mechanical engineering. Thanks to their ability to perform precise and controlled linear motion, they meet the industry's innovative needs for high-precision and demanding production tasks. As a result, engineers love linear actuators for their versatility and reliability. In this article, we will discuss the various types of linear actuators and closely examine their uses. This will help you choose the actuator that......
How Linear Actuators Work & What They Are
The linear actuator is a device that can convert rotary motion into precise linear motion. Through its own characteristics, it can carry equipment or itself to perform translation, up and down motion to achieve certain operational requirements. With the gradual development of modern automation and today's demand for mechanical operations, linear actuators are playing a key role. What is a Linear Actuator? Linear actuators, also known as “linear motors” or “electric cylinders”, are used as power drive ......
Ball Screw Actuators vs. Hydraulic Cylinders: A Guide to How They Work
Fig. 1 A picture of a High Precision Linear Actuator Every motion system comes down to one key question: what’s the best way to move a load in a straight line? For most industries, that answer usually narrows to two options—a linear actuator or a hydraulic cylinder. Both provide reliable push-and-pull force, but the way they work and the results they deliver are far from identical. A ball screw linear actuator brings precision, programmability, and clean operation, making it a favorite for robotics, m......
Ball and Screw Linear Actuators: Performance, Applications, and 2025 Market Trends
When deciding how to move a load precisely, the very first fork in the road is which screw-drive technology you use. The whole axis's efficiency, duty cycle, maintenance, and cost of ownership depend on that option. This guide starts by clarifying that context. So, when "ball screw vs. lead screw" occurs early, it's not a misstep but the lens through which your options make sense. What Is a Ball Screw Linear Actuator? Simple schematic of a ball screw linear actuator with motor, coupling, screw, and ca......
Ball Screws in CNC: What They Do and How They Work
Fig. 1 Ball screw CNC diagram Ball screws convert motor rotation into linear motion with rolling balls. That's why friction is low and efficiency is high, which can reach 90% vs. sliding lead screws. So, in this article, you'll learn what they are, where they are present in CNC, how they are different from lead and roller screws, and how to pick and maintain them. Basically, you'll find them driving the X, Y, and Z axes on mills, routers, and lathes, as well as inside ball-screw linear actuators. Whet......